feat: lazy pml BC and better FuncFlow __or__
parent
d0615d0372
commit
624914f8cb
|
@ -254,6 +254,8 @@ class FuncFlow:
|
|||
)
|
||||
supports_jax: bool = False
|
||||
|
||||
concatenated: bool = False
|
||||
|
||||
####################
|
||||
# - Functions
|
||||
####################
|
||||
|
@ -464,12 +466,19 @@ class FuncFlow:
|
|||
Returns:
|
||||
A lazy function that takes all arguments of both inputs, and returns a 2-tuple containing both output arguments.
|
||||
"""
|
||||
|
||||
def self_func(args, kwargs):
|
||||
ret = self.func(
|
||||
*list(args[: len(self.func_args)]),
|
||||
**{k: v for k, v in kwargs.items() if k in self.func_kwargs},
|
||||
)
|
||||
if not self.concatenated:
|
||||
return (ret,)
|
||||
return ret
|
||||
|
||||
return FuncFlow(
|
||||
func=lambda *args, **kwargs: (
|
||||
self.func(
|
||||
*list(args[: len(self.func_args)]),
|
||||
**{k: v for k, v in kwargs.items() if k in self.func_kwargs},
|
||||
),
|
||||
*self_func(args, kwargs),
|
||||
other.func(
|
||||
*list(args[len(self.func_args) :]),
|
||||
**{k: v for k, v in kwargs.items() if k in other.func_kwargs},
|
||||
|
@ -478,4 +487,5 @@ class FuncFlow:
|
|||
func_args=self.func_args + other.func_args,
|
||||
func_kwargs=self.func_kwargs | other.func_kwargs,
|
||||
supports_jax=self.supports_jax and other.supports_jax,
|
||||
concatenated=True,
|
||||
)
|
||||
|
|
|
@ -218,11 +218,11 @@ class AdiabAbsorbBoundCondNode(base.MaxwellSimNode):
|
|||
if has_sig_order and has_sig_range:
|
||||
return (layers | sig_order | sig_range).compose_within(
|
||||
enclosing_func=lambda els: td.Absorber(
|
||||
num_layers=els[0][0],
|
||||
num_layers=els[0],
|
||||
parameters=td.AbsorberParams(
|
||||
sigma_order=els[0][1],
|
||||
sigma_min=els[1][0],
|
||||
sigma_max=els[1][1],
|
||||
sigma_order=els[1],
|
||||
sigma_min=els[2][0],
|
||||
sigma_max=els[2][1],
|
||||
),
|
||||
),
|
||||
supports_jax=False,
|
||||
|
|
|
@ -140,10 +140,12 @@ class PMLBoundCondNode(base.MaxwellSimNode):
|
|||
col.label(text='2ε₀/Δt')
|
||||
|
||||
####################
|
||||
# - Output
|
||||
# - FlowKind.Value
|
||||
####################
|
||||
@events.computes_output_socket(
|
||||
'BC',
|
||||
kind=ct.FlowKind.Value,
|
||||
# Loaded
|
||||
props={'active_socket_set'},
|
||||
input_sockets={
|
||||
'Layers',
|
||||
|
@ -162,39 +164,252 @@ class PMLBoundCondNode(base.MaxwellSimNode):
|
|||
'α Order': True,
|
||||
'α Range': True,
|
||||
},
|
||||
output_sockets={'BC'},
|
||||
output_socket_kinds={'BC': ct.FlowKind.Params},
|
||||
)
|
||||
def compute_pml_boundary_cond(self, props, input_sockets) -> td.PML:
|
||||
def compute_pml_value(self, props, input_sockets, output_sockets) -> td.PML:
|
||||
r"""Computes the PML boundary condition based on the active socket set.
|
||||
|
||||
- **Simple**: Use `tidy3d`'s default parameters for defining the PML conductor (apart from number of layers).
|
||||
- **Full**: Use the user-defined $\sigma$, $\kappa$, and $\alpha$ parameters, specifically polynomial order and sim-relative min/max conductivity values.
|
||||
"""
|
||||
log.debug(
|
||||
'%s: Computing "%s" PML Boundary Condition (Input Sockets = %s)',
|
||||
self.sim_node_name,
|
||||
props['active_socket_set'],
|
||||
input_sockets,
|
||||
)
|
||||
output_params = output_sockets['BC']
|
||||
layers = input_sockets['Layers']
|
||||
|
||||
# Simple PML
|
||||
if props['active_socket_set'] == 'Simple':
|
||||
return td.PML(num_layers=input_sockets['Layers'])
|
||||
has_layers = not ct.FlowSignal.check(layers)
|
||||
has_output_params = not ct.FlowSignal.check(output_params)
|
||||
|
||||
# Full PML
|
||||
return td.PML(
|
||||
num_layers=input_sockets['Layers'],
|
||||
parameters=td.PMLParams(
|
||||
sigma_order=input_sockets['σ Order'],
|
||||
sigma_min=input_sockets['σ Range'][0],
|
||||
sigma_max=input_sockets['σ Range'][1],
|
||||
kappa_order=input_sockets['κ Order'],
|
||||
kappa_min=input_sockets['κ Range'][0],
|
||||
kappa_max=input_sockets['κ Range'][1],
|
||||
alpha_order=input_sockets['α Order'],
|
||||
alpha_min=input_sockets['α Range'][0],
|
||||
alpha_max=input_sockets['α Range'][1],
|
||||
),
|
||||
)
|
||||
if has_output_params and has_layers and not output_params.symbols:
|
||||
active_socket_set = props['active_socket_set']
|
||||
match active_socket_set:
|
||||
case 'Simple':
|
||||
return td.PML(num_layers=layers)
|
||||
|
||||
case 'Full':
|
||||
sigma_order = input_sockets['σ Order']
|
||||
sigma_range = input_sockets['σ Range']
|
||||
kappa_order = input_sockets['κ Order']
|
||||
kappa_range = input_sockets['κ Range']
|
||||
alpha_order = input_sockets['α Order']
|
||||
alpha_range = input_sockets['α Range']
|
||||
|
||||
has_sigma_order = not ct.FlowSignal.check(sigma_order)
|
||||
has_sigma_range = not ct.FlowSignal.check(sigma_range)
|
||||
has_kappa_order = not ct.FlowSignal.check(kappa_order)
|
||||
has_kappa_range = not ct.FlowSignal.check(kappa_range)
|
||||
has_alpha_order = not ct.FlowSignal.check(alpha_order)
|
||||
has_alpha_range = not ct.FlowSignal.check(alpha_range)
|
||||
|
||||
if (
|
||||
has_sigma_order
|
||||
and has_sigma_range
|
||||
and has_kappa_order
|
||||
and has_kappa_range
|
||||
and has_alpha_order
|
||||
and has_alpha_range
|
||||
):
|
||||
return td.PML(
|
||||
num_layers=layers,
|
||||
parameters=td.PMLParams(
|
||||
sigma_order=sigma_order,
|
||||
sigma_min=sigma_range[0],
|
||||
sigma_max=sigma_range[1],
|
||||
kappa_order=kappa_order,
|
||||
kappa_min=kappa_range[0],
|
||||
kappa_max=kappa_range[1],
|
||||
alpha_order=alpha_order,
|
||||
alpha_min=alpha_range[0],
|
||||
alpha_max=alpha_range[1],
|
||||
),
|
||||
)
|
||||
|
||||
return ct.FlowSignal.FlowPending
|
||||
|
||||
####################
|
||||
# - FlowKind.Func
|
||||
####################
|
||||
@events.computes_output_socket(
|
||||
'BC',
|
||||
kind=ct.FlowKind.Func,
|
||||
# Loaded
|
||||
props={'active_socket_set'},
|
||||
input_sockets={
|
||||
'Layers',
|
||||
'σ Order',
|
||||
'σ Range',
|
||||
'κ Order',
|
||||
'κ Range',
|
||||
'α Order',
|
||||
'α Range',
|
||||
},
|
||||
input_socket_kinds={
|
||||
'Layers': ct.FlowKind.Func,
|
||||
'σ Order': ct.FlowKind.Func,
|
||||
'σ Range': ct.FlowKind.Func,
|
||||
'κ Order': ct.FlowKind.Func,
|
||||
'κ Range': ct.FlowKind.Func,
|
||||
'α Order': ct.FlowKind.Func,
|
||||
'α Range': ct.FlowKind.Func,
|
||||
},
|
||||
input_sockets_optional={
|
||||
'σ Order': True,
|
||||
'σ Range': True,
|
||||
'κ Order': True,
|
||||
'κ Range': True,
|
||||
'α Order': True,
|
||||
'α Range': True,
|
||||
},
|
||||
output_sockets={'BC'},
|
||||
output_socket_kinds={'BC': ct.FlowKind.Params},
|
||||
)
|
||||
def compute_pml_func(self, props, input_sockets, output_sockets) -> td.PML:
|
||||
output_params = output_sockets['BC']
|
||||
layers = input_sockets['Layers']
|
||||
|
||||
has_output_params = not ct.FlowSignal.check(output_params)
|
||||
has_layers = not ct.FlowSignal.check(layers)
|
||||
|
||||
if has_output_params and has_layers:
|
||||
active_socket_set = props['active_socket_set']
|
||||
match active_socket_set:
|
||||
case 'Simple':
|
||||
return layers.compose_within(
|
||||
enclosing_func=lambda layers: td.PML(num_layers=layers),
|
||||
supports_jax=False,
|
||||
)
|
||||
|
||||
case 'Full':
|
||||
sigma_order = input_sockets['σ Order']
|
||||
sigma_range = input_sockets['σ Range']
|
||||
kappa_order = input_sockets['κ Order']
|
||||
kappa_range = input_sockets['κ Range']
|
||||
alpha_order = input_sockets['α Order']
|
||||
alpha_range = input_sockets['α Range']
|
||||
|
||||
has_sigma_order = not ct.FlowSignal.check(sigma_order)
|
||||
has_sigma_range = not ct.FlowSignal.check(sigma_range)
|
||||
has_kappa_order = not ct.FlowSignal.check(kappa_order)
|
||||
has_kappa_range = not ct.FlowSignal.check(kappa_range)
|
||||
has_alpha_order = not ct.FlowSignal.check(alpha_order)
|
||||
has_alpha_range = not ct.FlowSignal.check(alpha_range)
|
||||
|
||||
if (
|
||||
has_sigma_order
|
||||
and has_sigma_range
|
||||
and has_kappa_order
|
||||
and has_kappa_range
|
||||
and has_alpha_order
|
||||
and has_alpha_range
|
||||
):
|
||||
return (
|
||||
sigma_order
|
||||
| sigma_range
|
||||
| kappa_order
|
||||
| kappa_range
|
||||
| alpha_order
|
||||
| alpha_range
|
||||
).compose_within(
|
||||
enclosing_func=lambda els: td.PML(
|
||||
num_layers=layers,
|
||||
parameters=td.PMLParams(
|
||||
sigma_order=els[0],
|
||||
sigma_min=els[1][0],
|
||||
sigma_max=els[1][1],
|
||||
kappa_order=els[2],
|
||||
kappa_min=els[3][0],
|
||||
kappa_max=els[3][1],
|
||||
alpha_order=els[4][1],
|
||||
alpha_min=els[5][0],
|
||||
alpha_max=els[5][1],
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return ct.FlowSignal.FlowPending
|
||||
|
||||
####################
|
||||
# - FlowKind.Params
|
||||
####################
|
||||
@events.computes_output_socket(
|
||||
'BC',
|
||||
kind=ct.FlowKind.Params,
|
||||
# Loaded
|
||||
props={'active_socket_set'},
|
||||
input_sockets={
|
||||
'Layers',
|
||||
'σ Order',
|
||||
'σ Range',
|
||||
'κ Order',
|
||||
'κ Range',
|
||||
'α Order',
|
||||
'α Range',
|
||||
},
|
||||
input_socket_kinds={
|
||||
'Layers': ct.FlowKind.Params,
|
||||
'σ Order': ct.FlowKind.Params,
|
||||
'σ Range': ct.FlowKind.Params,
|
||||
'κ Order': ct.FlowKind.Params,
|
||||
'κ Range': ct.FlowKind.Params,
|
||||
'α Order': ct.FlowKind.Params,
|
||||
'α Range': ct.FlowKind.Params,
|
||||
},
|
||||
input_sockets_optional={
|
||||
'σ Order': True,
|
||||
'σ Range': True,
|
||||
'κ Order': True,
|
||||
'κ Range': True,
|
||||
'α Order': True,
|
||||
'α Range': True,
|
||||
},
|
||||
)
|
||||
def compute_pml_params(self, props, input_sockets) -> td.PML:
|
||||
r"""Computes the PML boundary condition based on the active socket set.
|
||||
|
||||
- **Simple**: Use `tidy3d`'s default parameters for defining the PML conductor (apart from number of layers).
|
||||
- **Full**: Use the user-defined $\sigma$, $\kappa$, and $\alpha$ parameters, specifically polynomial order and sim-relative min/max conductivity values.
|
||||
"""
|
||||
layers = input_sockets['Layers']
|
||||
has_layers = not ct.FlowSignal.check(layers)
|
||||
|
||||
if has_layers:
|
||||
active_socket_set = props['active_socket_set']
|
||||
match active_socket_set:
|
||||
case 'Simple':
|
||||
return layers
|
||||
|
||||
case 'Full':
|
||||
sigma_order = input_sockets['σ Order']
|
||||
sigma_range = input_sockets['σ Range']
|
||||
kappa_order = input_sockets['σ Order']
|
||||
kappa_range = input_sockets['σ Range']
|
||||
alpha_order = input_sockets['σ Order']
|
||||
alpha_range = input_sockets['σ Range']
|
||||
|
||||
has_sigma_order = not ct.FlowSignal.check(sigma_order)
|
||||
has_sigma_range = not ct.FlowSignal.check(sigma_range)
|
||||
has_kappa_order = not ct.FlowSignal.check(kappa_order)
|
||||
has_kappa_range = not ct.FlowSignal.check(kappa_range)
|
||||
has_alpha_order = not ct.FlowSignal.check(alpha_order)
|
||||
has_alpha_range = not ct.FlowSignal.check(alpha_range)
|
||||
|
||||
if (
|
||||
has_sigma_order
|
||||
and has_sigma_range
|
||||
and has_kappa_order
|
||||
and has_kappa_range
|
||||
and has_alpha_order
|
||||
and has_alpha_range
|
||||
):
|
||||
return (
|
||||
sigma_order
|
||||
| sigma_range
|
||||
| kappa_order
|
||||
| kappa_range
|
||||
| alpha_order
|
||||
| alpha_range
|
||||
)
|
||||
|
||||
return ct.FlowSignal.FlowPending
|
||||
|
||||
|
||||
####################
|
||||
|
|
|
@ -161,20 +161,20 @@ class BoxStructureNode(base.MaxwellSimNode):
|
|||
return (center | size | medium).compose_within(
|
||||
enclosing_func=lambda els: tdadj.JaxStructure(
|
||||
geometry=tdadj.JaxBox(
|
||||
center=tuple(els[0][0].flatten()),
|
||||
size=tuple(els[0][1].flatten()),
|
||||
center=tuple(els[0].flatten()),
|
||||
size=tuple(els[1].flatten()),
|
||||
),
|
||||
medium=els[1],
|
||||
medium=els[2],
|
||||
),
|
||||
supports_jax=True,
|
||||
)
|
||||
return (center | size | medium).compose_within(
|
||||
enclosing_func=lambda els: td.Structure(
|
||||
geometry=td.Box(
|
||||
center=tuple(els[0][0].flatten()),
|
||||
size=tuple(els[0][1].flatten()),
|
||||
center=tuple(els[0].flatten()),
|
||||
size=tuple(els[1].flatten()),
|
||||
),
|
||||
medium=els[1],
|
||||
medium=els[2],
|
||||
),
|
||||
supports_jax=False,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue