It Works!

master
Sofus Albert Høgsbro Rose 2020-04-17 01:20:11 +02:00
commit 73cbcae2c9
10 changed files with 1986 additions and 0 deletions

6
.gitignore vendored 100644
View File

@ -0,0 +1,6 @@
.tmp
dev
dist
test.sh
deploy.sh

621
LICENSE.txt 100644
View File

@ -0,0 +1,621 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

132
README.md 100644
View File

@ -0,0 +1,132 @@
# Fast HDR-->SDR Conversion Without a GPU
A slightly insane solution to a devilishly irritating problem.
## Problem: What's the Problem?
I like to master my 3D work in HDR, because, well, I can. I'm a color nerd without a reference monitor.
When I want to show my friends, I try to stream this HDR content using the wonderful Jellyfin (Emby fork). Problems ensue: https://github.com/jellyfin/jellyfin/issues/415 . This isn't the first time somebody has wanted to do something like this, and had trouble: https://www.verizondigitalmedia.com/blog/best-practices-for-live-4k-video-ingestion-and-transcoding/ .
Long story short? The colors look **WRONG**. It's all wrong. It irritates me.
I am a normal person: I don't own an HDR screen, so like any normal person I spend days writing software to solve my irritations!
*Plus, my screen just doesn't do BT.2020. I'm not sure any screen really does.*
## Problem: Isn't This Solved in VLC/mpv/etc. ?
It is indeed! They do a very nice 2020/PQ --> 709 on the GPU, in real time, and with very nice tone mapping.
However, ffmpeg cannot do this in realtime. This means, no live transcoding --> streaming of HDR clips through Jellyfin - and none of the other fun realtime imaging one wants to do on a when one isn't plugged into a loud ASIC more power-hungry than my refrigerator.
## Problem: How to Solve It?
My approach is as follows:
* **Piping**: We keep `ffmpeg` to decode, but have it spit out raw YUV444 data, which we process and spit back out to `ffmpeg` for encoding.
* **Threaded I/O**: Read, Write, and Process happen in different threads - the slowest determines the throughput.
* **8-Bit LUT**: The actual imaging operations are first precomputed into a `256x256x256x3` LUT. These arbitrarily complex global operations are then applied with a simple lookup (no interpolation - just pure 8-bit madness!).
## Problem: So - Was it Worth It?
Well - all the optimization and reverse engineering aside, the colors in my HDR content looks right through Jellyfin. So? All is right with the world again!
Though, to be honest, none of my non-technical peers quite understand where I've been the past couple days...
# Features
How can `fast-hdr` make your day brighter?
* [**Hackable**] Want to easily implement arbitrarily complex global imaging operations, whilst seeing them executed with decent accuracy in real time? It's not like there's a lot of code to sift through - just spice up `hdr_sdr_gen.cpp` with your custom tonemapping function, or whatever you want!
* [**CPU-Based**] There's no GPU here, which means flexibility. Run it on your Raspberry Pi! Run it on a phone! Run it cheaply in - dare I say it - the cloud!
* [**Fast**] With FFMPEG as a decoder piped in, I get `30` FPS at 4K on a `Threadripper 1950X (16-core)`.
* Of course, not all CPUs in the world are Threadrippers, so the `ffmpeg` wrapper sets the max resolution to `1080p`, which works like smooth butter; `80` FPS on my less-powerful-but-still-kinda-beefy server. Comment it out if you don't like it :P
* [**Jellyfin-oriented `ffmpeg` Wrapper**] Designed for Jellyfin, there's a Python wrapper around `ffmpeg` which injects the HDR-->SDR conversion into any complex `ffmpeg` invocation!
* Everyone uses `ffmpeg` - therefore, `fast-hdr` can run everywhere :) !
* [**Realtime, Arbitrarily Complex Global Operations**] With a `3 * 256^3` sized 8-Bit LUT (just 50MB in memory!) precomputed at compile-time by `hdr_sdr_gen.cpp`, you can perform arbitrarily complex global operations, and apply them to an image (each 8-bit YUV triplet has a corresponding triplet) without any interpolation whatsoever. In this case, that's just an inverse PQ operator, followed by a global tonemap, followed by an sRGB correction.
* [**UNIX Philosophy**] `fast-hdr` does processing, and that's it. It's just a brick. You can use any decoder / encoder you want - as long as it spits out / gobbles up YUV444p data to `stdout`! Hell, I don't know, go crazy with OpenHEVC, or whatever shiny new thing ILM cooked up this time. (Though I'd probably use `ffmpeg` as it's less hard and at least tested).
# How To Do
0. Make sure you're on Linux, and have `python3` and `gcc` (and can invoke `g++`).
1. Get your hands on a standalone `ffmpeg` and `ffprobe`, and put it in `res`.
2. Run `compile.sh`. It might take a sec, it has to precompute the `.lutd`.
Then, let it play with some footage! For example, here's a complex ffmpeg invocation (run by Jellyfin):
```bash
rm -rf .tmp
FFMPEG="./dist/ffmpeg-custom"
FFMPEG_PY="./dist/ffmpeg"
HDR_SDR="./dist/hdr_sdr"
LUT_PATH="./dist/cnv.lut8"
# Test on a nice shot of a cute little catterpiller.
TIME="00:01:28"
FILE="./Life Untouched 4K Demo.mp4"
HLS_SEG=".tmp/transcodes/hash_of_your_hdr_file_no_need_to_replace%d.ts"
FILE_OUT=".tmp/transcodes/hash_of_your_hdr_file_no_need_to_replace.m3u8"
TEST=true "$FFMPEG_PY" -ss "$TIME" -f mp4 -i file:"$FILE" -map_metadata -1 -map_chapters -1 -threads 0 -map 0:0 -map 0:1 -map -0:s -codec:v:0 libx264 -pix_fmt yuv420p -preset veryfast -crf 23 -maxrate 34541128 -bufsize 69082256 -profile:v high -level 4.1 -x264opts:0 subme=0:me_range=4:rc_lookahead=10:me=dia:no_chroma_me:8x8dct=0:partitions=none -force_key_frames:0 "expr:gte(t,0+n_forced*3)" -g 72 -keyint_min 72 -sc_threshold 0 -vf "scale=trunc(min(max(iw\,ih*dar)\,1920)/2)*2:trunc(ow/dar/2)*2" -start_at_zero -vsync -1 -codec:a:0 aac -strict experimental -ac 2 -ab 384000 -af "volume=2" -copyts -avoid_negative_ts disabled -f hls -max_delay 5000000 -hls_time 3 -individual_header_trailer 0 -hls_segment_type mpegts -start_number 0 -hls_segment_filename "$HLS_SEG" -hls_playlist_type vod -hls_list_size 0 -y "$FILE_OUT"
```
## How To: Jellyfin
To get Jellyfin to convert HDR footage when transcoding for web playback, follow the How To steps and make sure it works locally.
Then:
0. Make sure the python script `ffmpeg`, the actual binaries `ffmpeg-custom` and `ffprobe`, the compiled binary `hdr_sdr`, and the generated LUT `cnd_lut8` are in `dist`.
1. Copy `dist` to somewhere on your server owned by the `jellyfin` user. Probably a good idea to `chmod` it too.
2. In the Jellyfin interface, in Playback -> `ffmpeg` Path, point it at the Python script `ffmpeg`. *It's critical that `ffprobe` is there too, otherwise Jellyfin will be unable to read header info about your files, like audio tracks or subtitle tracks.*
Things to be aware of:
- Seeking is super slow, as for some reason the wrapper doesn't understand keyframes, and will try to encode its way to wherever you seeked to. So don't seek :) Resuming works fine, however.
- Occasionally, you might have to `killall ffmpeg-custom && killall hdr_sdr`, or they'll keep eating CPU cycles after you've stopped watching. I'm still not sure why. I have no idea why.
# Testing / Stability / Modularization / Any Kind of Good Software Development Practices
No
# Contributing
*Is that a `malloc` I see in your C++? In this devout Stroustrup'ian neighborhood? Blasphemy...*
I like you, you insane monkey - if this horrible hack truly is actually useful to you then I'm speechless!
I'm happy to help you make it work, help with bugs (make an Issue!), and/or (probably) accept any kind of PR. God knows there's enough wrong with this piece of software that it needs some fixing up...
Development happens at https://git.sofusrose.com/so-rose/fast-hdr .
# TODO
It gets wilder!
* **Seeking in Jellyfin**: One cannot seek from the Jellyfin interface. This may have something to do with the `ffmpeg` wrapper not catching the `q` to quit.
* **Better Profiling**: Measuring performance characteristics of a threaded application like this isn't super easy, but probably worth it.
* **Dithering**: There's a reason nobody precomputes transforms on every possible 8-bit YUV value: Posterization. We can solve this to a quite reasonable degree by dithering while applying the LUT!
* **More Robust `ffmpeg` Wrapper**: It's a little touchy right now. Like, it throws an exception if you give it a wrong `-f`...
* **More Vivid Image**: Personal preference, I like vivid! This is just a matter of tweaking the image processing pipeline.
* **Verify Color Science**: Right now, it's all done a bit by trial and error. It does, however, match VLC's output quite well.
* **10-bit LUT**: Who cares if this needs a 3GB buffer to compute? It solves posterization issues, and allows directly processing 10-bit footage to boot!
* **Gamut Rendering**: Currently, there's no gamut mapping or rendering intent management. It coule be nice to have.
* **Better Tonemapping**: The present tonemapping is arbitrarily chosen, even though it does look nice.
* **Variable Input**: YUV444p isn't nirvana. Plus, imagine how fast clever LUT'ing directly on 4K YUV420p data might be.

21
compile.sh 100755
View File

@ -0,0 +1,21 @@
#!/bin/bash
set -e
rm -r dist
mkdir -p dist
# Compile to Dist
g++ --std=c++17 -pthread -o dist/hdr_sdr -fopenmp -fopenmp-simd -Ofast -frename-registers -funroll-loops -D_GLIBCXX_PARALLEL -flto src/hdr_sdr.cpp
# Generate LUT8
cd gen
./compile.sh
./hdr_sdr_gen ../dist/cnv.lut8
cd -
# Copy Things to Dist
#~ cp src/hdr_sdr.cpp dist/
cp src/ffmpeg dist/
cp res/* dist/

1
gen/.gitignore vendored 100644
View File

@ -0,0 +1 @@
hdr_sdr_gen

5
gen/compile.sh 100755
View File

@ -0,0 +1,5 @@
#!/bin/bash
set -e
g++ --std=c++17 -o hdr_sdr_gen -fopenmp -O3 -march=native hdr_sdr_gen.cpp

474
gen/hdr_sdr_gen.cpp 100644
View File

@ -0,0 +1,474 @@
/*
* This file is part of the fast-hdr project (https://git.sofusrose.com/so-rose/fast-hdr).
* Copyright (c) 2020 Sofus Rose.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Usage: <RGB PRODUCER> | ./hdr_sdr [WIDTH] [HEIGHT] | <RGB ENCODER>
// TODO:
// - Desaturate Highlights
// - Dithering
// Libraries
#include <iostream>
#include <fstream>
#include <string>
#include <math.h>
#include <algorithm>
#include <thread>
#include <unistd.h>
#include <sys/stat.h>
// User Defines
#define IMG_BITS 8
// User Types
typedef uint8_t img_uint; // Must Hold Image Data Point of >= IMG_BITS Size
#define IMG_INT_MAX ((1 << IMG_BITS) - 1)
#define IMG_INT_MAX_D ( (double) IMG_INT_MAX )
// Resolution and Size of LUTD (Dimensioned LUT
#define LUTD_BITS IMG_BITS
#define LUTD_CHNLS 3
#define LUTD_RES (1 << LUTD_BITS) // 2**LUTD_BITS
#define LUTD_SIZE (LUTD_RES * LUTD_RES * LUTD_RES * LUTD_CHNLS)
// Each 8-Bit YUV Triplet => Corresponding YUV Triplet.
// 4D LUT, Three "Cubes": Y Cube, U Cube, V Cube.
// 0. To Advance One Y, U, V, C(hannel) vue, Advance by a Stride
// 1. Use Old YUV to Find X,Y,Z Index On Cube(s).
// 2. Compute New YUV by Indexing Each Cube Identically
#define LUTD_Y_STRIDE(y) (y << (0 * LUTD_BITS)) // Y: Shift by (2**LUTD_BITS)**0
#define LUTD_U_STRIDE(u) (u << (1 * LUTD_BITS)) // U: Shift by (2**LUTD_BITS)**1
#define LUTD_V_STRIDE(v) (v << (2 * LUTD_BITS)) // V: Shift by (2**LUTD_BITS)**2
#define LUTD_C_STRIDE(c) (c << (3 * LUTD_BITS)) // C: Shift by (2**LUTD_BITS)**3
// Namespacing
using namespace std;
//###########
// - LUT Methods
//###########
void write_lutd(img_uint *lutd, string path_lutd) {
// The array must be sized as LUTD_SIZE.
ofstream file_lutd(path_lutd, ofstream::binary);
if (file_lutd.is_open()) {
file_lutd.write(reinterpret_cast<char*>(lutd), LUTD_SIZE);
}
}
//###########
// - Color Model Conversions
//###########
void yuv_rgb(
img_uint *y,
img_uint *u,
img_uint *v,
double *buf_rgb
) {
int c = (double) *y;
int d = (double) *u - 128.0;
int e = (double) *v - 128.0;
buf_rgb[0] = clamp( c + 1.370705 * e, 0.0, IMG_INT_MAX_D ) / IMG_INT_MAX_D;
buf_rgb[1] = clamp( c - 0.698001 * d - 0.337633 * e, 0.0, IMG_INT_MAX_D ) / IMG_INT_MAX_D;
buf_rgb[2] = clamp( c + 1.732446 * d , 0.0, IMG_INT_MAX_D ) / IMG_INT_MAX_D;
}
void rgb_yuv(
double *buf_rgb,
img_uint *y,
img_uint *u,
img_uint *v
) {
double r = buf_rgb[0] * 255.0;
double g = buf_rgb[1] * 255.0;
double b = buf_rgb[2] * 255.0;
*y = (img_uint) clamp( 0.257 * r + 0.504 * g + 0.098 * b + 16.0 , 0.0, IMG_INT_MAX_D);
*u = (img_uint) clamp(-0.148 * r - 0.291 * g + 0.439 * b + 128.0, 0.0, IMG_INT_MAX_D);
*v = (img_uint) clamp( 0.439 * r - 0.368 * g - 0.071 * b + 128.0, 0.0, IMG_INT_MAX_D);
}
void rgb_hsl(
double *buf_rgb,
double *buf_hsl
) {
// RGB to HSL with Luma Lightness
// Calculate Chroma
double chnl_max = max(buf_rgb[0], max(buf_rgb[1], buf_rgb[2]));
double chnl_min = min(buf_rgb[0], min(buf_rgb[1], buf_rgb[2]));
double chroma = chnl_max - chnl_min;
// Calculate Lightness
buf_hsl[2] = (chnl_max + chnl_min) / 2;
// Calculate Saturation
if (buf_hsl[2] != 0.0 && buf_hsl[2] != 1.0) {
buf_hsl[1] = chroma / ( 1 - abs(2 * buf_hsl[2] - 1) );
} else {
buf_hsl[1] = 0.0;
}
// Calculate Hue (Degrees)
if (chroma == 0) {
buf_hsl[0] = 0.0;
} else if (chnl_max == buf_rgb[0]) {
buf_hsl[0] = (buf_rgb[1] - buf_rgb[2]) / chroma;
} else if (chnl_max == buf_rgb[1]) {
buf_hsl[0] = 2.0 + (buf_rgb[2] - buf_rgb[0]) / chroma;
} else if (chnl_max == buf_rgb[2]) {
buf_hsl[0] = 4.0 + (buf_rgb[0] - buf_rgb[1]) / chroma;
}
buf_hsl[0] *= 60.0;
}
void hsl_rgb(
double *buf_hsl,
double *buf_rgb
) {
// HSL to RGB with Luma Lightness
double buf_rgb_1[3] {0.0, 0.0, 0.0};
double chroma = ( 1 - abs(2 * buf_hsl[2] - 1) ) * buf_hsl[1];
double H_reduc = buf_hsl[0] / 60.0;
double X = chroma * ( 1 - abs(fmod(H_reduc, 2.0) - 1) );
if (ceil(H_reduc) == 1) {
buf_rgb_1[0] = chroma;
buf_rgb_1[1] = X;
buf_rgb_1[2] = 0.0;
} else if (ceil(H_reduc) == 2) {
buf_rgb_1[0] = X;
buf_rgb_1[1] = chroma;
buf_rgb_1[2] = 0.0;
} else if (ceil(H_reduc) == 3) {
buf_rgb_1[0] = 0.0;
buf_rgb_1[1] = chroma;
buf_rgb_1[2] = X;
} else if (ceil(H_reduc) == 4) {
buf_rgb_1[0] = 0.0;
buf_rgb_1[1] = X;
buf_rgb_1[2] = chroma;
} else if (ceil(H_reduc) == 5) {
buf_rgb_1[0] = X;
buf_rgb_1[1] = 0.0;
buf_rgb_1[2] = chroma;
} else if (ceil(H_reduc) == 6) {
buf_rgb_1[0] = chroma;
buf_rgb_1[1] = 0.0;
buf_rgb_1[2] = X;
} else {
buf_rgb_1[0] = 0.0;
buf_rgb_1[1] = 0.0;
buf_rgb_1[2] = 0.0;
}
double m = buf_hsl[2] - (chroma / 2);
buf_rgb[0] = buf_rgb_1[0] + m;
buf_rgb[1] = buf_rgb_1[1] + m;
buf_rgb[2] = buf_rgb_1[2] + m;
}
void s_sat(double *buf_rgb, double fac_sat) {
double buf_hsl[3] {0.0, 0.0, 0.0};
rgb_hsl(buf_rgb, buf_hsl);
buf_hsl[1] *= fac_sat;
hsl_rgb(buf_hsl, buf_rgb);
//~ buf_rgb[0] = clamp(buf_rgb[0], 0.0, 1.0);
//~ buf_rgb[1] = clamp(buf_rgb[1], 0.0, 1.0);
//~ buf_rgb[2] = clamp(buf_rgb[2], 0.0, 1.0);
}
//###########
// - HDR Transfer Curves
//###########
#define c1 0.8359375
#define c2 18.8515625
#define c3 18.6875
#define m1 0.1593017578125
#define m2 78.84375
double gam_pq_lin(double v) {
return pow( (pow(v, 1/m2) - c1) / (c2 - c3 * pow(v, 1/m2)), 1/m1 );
}
double gam_lin_pq(double v) {
return pow( (c1 + c2 * pow(v, m1)) / (1 + c3 * pow(v, m1)), m2 );
}
//###########
// - Colorspace Conversions
//###########
void bt2020_bt709(double *buf_rgb) {
// bt2020_bt709
double cmat[9] {
1.6605, -0.5876, -0.0728,
-0.1246, 1.1329, -0.0083,
-0.0182, -0.1006, 1.1187
};
double r = buf_rgb[0];
double g = buf_rgb[1];
double b = buf_rgb[2];
buf_rgb[0] = r * cmat[0] + g * cmat[1] + b * cmat[2]; //Red
buf_rgb[1] = r * cmat[3] + g * cmat[4] + b * cmat[5]; //Green
buf_rgb[2] = r * cmat[6] + g * cmat[7] + b * cmat[8]; //Blue
//~ buf_rgb[0] = r * cmat[0] + g * cmat[1] + b * cmat[2]; //Red
//~ buf_rgb[1] = r * cmat[3] + g * cmat[4] + b * cmat[5]; //Green
//~ buf_rgb[2] = r * cmat[6] + g * cmat[7] + b * cmat[8]; //Blue
}
float normal_pdf(double x, double m, double s)
{
static const double inv_sqrt_2pi = 0.3989422804014327;
double a = (x - m) / s;
return inv_sqrt_2pi / s * std::exp(-0.5f * a * a);
}
void render_gamut(double *buf_rgb) {
// Calculate Lightness
double chnl_max = max(buf_rgb[0], max(buf_rgb[1], buf_rgb[2]));
double chnl_min = min(buf_rgb[0], min(buf_rgb[1], buf_rgb[2]));
// Zebras
if (chnl_min <= 0.0) {
buf_rgb[0] = 0.0;
buf_rgb[1] = 0.0;
buf_rgb[2] = 1.0;
}
if (chnl_max >= 1.0) {
double chroma = (chnl_max - chnl_min);
buf_rgb[0] = 1.0;
buf_rgb[1] = 0.0;
buf_rgb[2] = 0.0;
}
//~ double luma = 0.2126 * buf_rgb[0] + 0.7152 * buf_rgb[1] + 0.0722 * buf_rgb[2];
//~ double L = (chnl_max + chnl_min) / 2;
//~ // Scale Towards Gray Based on Luminance
//~ double scl = normal_pdf(clamp(chroma, 0.0, 1.0), 1.0, 0.01) / 3.98942;
//~ buf_rgb[0] = (1 - scl) * buf_rgb[0] + scl * luma;
//~ buf_rgb[1] = (1 - scl) * buf_rgb[1] + scl * luma;
//~ buf_rgb[2] = (1 - scl) * buf_rgb[2] + scl * luma;
//~ buf_rgb[0] = (1 - chroma) * buf_rgb[0] + chroma * luma;
//~ buf_rgb[1] = (1 - chroma) * buf_rgb[1] + chroma * luma;
//~ buf_rgb[2] = (1 - chroma) * buf_rgb[2] + chroma * luma;
//~ buf_rgb[0] = chroma;
//~ buf_rgb[1] = chroma;
//~ buf_rgb[2] = chroma;
}
//###########
// - Tonemapping
//###########
double tm_cool(double v) {
v *= 150.0;
double A = 0.15;
double B = 0.50;
double C = 0.10;
double D = 0.20;
double E = 0.02;
double F = 0.30;
double W = 11.2;
return ((v*(A*v+C*B)+D*E)/(v*(A*v+B)+D*F))-E/F;
//~ return v / (v + 1);
}
//###########
// - SDR Transfer Curves
//###########
double gam_lin_srgb(double v) {
return v > 0.0031308 ? (( 1.055 * pow(v, (1.0f / 2.4)) ) - 0.055) : v * 12.92;
}
double gam_srgb_lin(double v) {
return v > 0.04045 ? pow(( (v + 0.055) / 1.055 ), 2.4) : v / 12.92;
}
#define alpha 1.099
#define beta 0.018
#define zeta 0.081
double gam_lin_709(double v) {
if (v <= 0) {
return 0.0;
} else if (v < beta) {
return 4.5 * v;
} else if (v <= 1) {
return alpha * pow(v, 0.45) - (alpha - 1);
} else {
return 1.0;
}
}
double gam_709_lin(double v) {
if (v <= 0) {
return 0.0;
} else if (v < zeta) {
return v * (1 / 4.5);
} else if (v <= 1) {
return pow( (v + (alpha - 1)) / (alpha), (1 / 0.45) );
} else {
return 1.0;
}
}
//###########
// - Processing Methods
//###########
void proc(img_uint *y, img_uint *u, img_uint *v) {
// Create RGB Buffer
double buf_rgb[3] {0.0, 0.0, 0.0};
// YUV to RGB
yuv_rgb(y, u, v, buf_rgb);
// PQ --> Lin
for (int chnl = 0; chnl < 3; chnl++) {
buf_rgb[chnl] = gam_pq_lin( buf_rgb[chnl] );
}
// Global Tonemapping
for (int chnl = 0; chnl < 3; chnl++) {
buf_rgb[chnl] = tm_cool( buf_rgb[chnl] );
}
// Lin --> sRGB
for (int chnl = 0; chnl < 3; chnl++) {
buf_rgb[chnl] = gam_lin_srgb( buf_rgb[chnl] );
}
// RGB to YUV
rgb_yuv(buf_rgb, y, u, v);
}
void gen_lutd(img_uint *lutd) {
// Process the Payload Using Precomputed YUV Destinations
#pragma omp parallel for
for (size_t v = 0; v <= IMG_INT_MAX; v++) {
for (size_t u = 0; u <= IMG_INT_MAX; u++) {
for (size_t y = 0; y <= IMG_INT_MAX; y++) {
size_t ind_lutd = (
LUTD_Y_STRIDE(y) +
LUTD_U_STRIDE(u) +
LUTD_V_STRIDE(v)
);
// Get LUTD Pointers
uint8_t *y_lutd = &lutd[ind_lutd + LUTD_C_STRIDE(0)];
uint8_t *u_lutd = &lutd[ind_lutd + LUTD_C_STRIDE(1)];
uint8_t *v_lutd = &lutd[ind_lutd + LUTD_C_STRIDE(2)];
// Set LUTD Values to Default
*y_lutd = y;
*u_lutd = u;
*v_lutd = v;
// Process Default LUTD Values
proc(y_lutd, u_lutd, v_lutd);
}
}
}
}
//###########
// - Application
//###########
int main(int argc, char **argv) {
// PARSE: (Width, Height) => Image Size, LUT Path from Command Line
string path_lutd;
if (argc == 2) {
path_lutd = string(argv[1]);
} else {
cout << "Usage: ./hdr_sdr_gen [PATH_LUTD]" << endl;
return 1;
}
// LUTD: Allocate LUTD
img_uint *lutd = (img_uint*) malloc( sizeof(img_uint) * LUTD_SIZE );
// LUTD: Generate LUTD
gen_lutd(lutd);
// LUTD: Wrote LUTD
write_lutd(lutd, path_lutd);
}

2
res/.gitignore vendored 100644
View File

@ -0,0 +1,2 @@
ffmpeg-custom
ffprobe

415
src/ffmpeg 100755
View File

@ -0,0 +1,415 @@
#!/usr/bin/env python3
# This file is part of the fast-hdr project (https://git.sofusrose.com/so-rose/fast-hdr).
# Copyright (c) 2020 Sofus Rose.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#############
## - Imports
#############
import os, sys
import os.path
import subprocess
import datetime
import curses
#############
## - Script Settings
#############
try :
if os.environ['TEST'] == 'true' :
TEST = True
else :
TEST = False
except :
TEST = False
SCRIPT_PATH = os.path.dirname( os.path.realpath(__file__) )
MAX_WIDTH = 1920
MAX_HEIGHT = 1080
# Set Paths based
log_path = f'{SCRIPT_PATH}/hdr_sdr.log'
ffmpeg = f'{SCRIPT_PATH}/ffmpeg-custom'
hdr_sdr = f'{SCRIPT_PATH}/hdr_sdr'
lut_path = f'{SCRIPT_PATH}/cnv.lut8'
# Assemble Basic Output Command
cmd_raw = [ffmpeg] + sys.argv[1:]
#############
## - Utility Functions
#############
def runCommand(*command, workingDir=os.getcwd(), env=None, stream=False) :
print(
f"[COMMAND] {datetime.datetime.now()}",
f"\tCommand: {' '.join(command)}",
'\n',
file = open(log_path, 'a'),
sep = '\n'
)
# Ensure all is printed that needs to be printed.
sys.stdout.flush()
# Change Directory to the working dir.
cache_curdir = os.getcwd()
if stream :
os.chdir(workingDir)
proc = subprocess.Popen(' '.join(command), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, env=env)
proc_out = iter(lambda: proc.stdout.read(1), b'')
while proc.poll() == None :
print( next(proc_out).decode('utf-8'), end='' )
else :
os.chdir(workingDir)
result = subprocess.run(' '.join(command), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True, env=env)
os.chdir(cache_curdir)
# Check the return code. Print the command output & exit if it's non-zero
if result.returncode != 0 :
print(result.stdout.decode('utf-8'))
print(
'[ERR]',
'Command Failed with message:\n',
*['>>\t' + x + '\n' for x in result.stdout.decode('utf-8').split('\n')],
file = open(log_path, 'a')
)
sys.exit()
return result.stdout.decode('utf-8')
#############
## - Metadata Mining
#############
# Extract File Paths
file_src = next(snip[5:] for snip in cmd_raw if snip[:5] == 'file:')
hls_dst = next(cmd_raw[i+1] for (i, snip) in enumerate(cmd_raw) if snip == '-hls_segment_filename')
file_dst = cmd_raw[-1]
# Extract Audio Stream #
audio_stream_num = 1
for mapping in [cmd_raw[i+1] for (i, snip) in enumerate(cmd_raw) if snip == '-map'] :
if mapping[-1] not in ('0', 's') :
# The Audio Stream #!
audio_stream_num = int(mapping[2])
# Extract Input Format
inp_format = next(cmd_raw[i+1] for (i, snip) in enumerate(cmd_raw) if snip[:2] == '-f')
# Extract Seek Information (may not exist))
try :
seek_time = next(cmd_raw[i+1] for (i, snip) in enumerate(cmd_raw) if snip[:3] == '-ss')
except :
seek_time = "00:00:00"
# Extract Resolution
x_res = int(
runCommand(
'mediainfo',
'--Language=raw',
'--Inform="Video;%Width%"',
f'"{file_src}"',
)
)
y_res = int(
runCommand(
'mediainfo',
'--Language=raw',
'--Inform="Video;%Height%"',
f'"{file_src}"',
)
)
# Limit Resolution to 1920 Horizontal
if x_res > MAX_WIDTH :
fac = x_res / MAX_WIDTH
x_res /= fac
y_res /= fac
elif y_res > MAX_HEIGHT :
fac = y_res / MAX_HEIGHT
x_res /= fac
y_res /= fac
# Extract Color Information
primaries = runCommand(
'mediainfo',
'--Language=raw',
'--Inform="Video;%colour_primaries%"',
f'"{file_src}"',
).strip()
# Extract FPS Information
fps = round(float(
runCommand(
'mediainfo',
'--Language=raw',
'--Inform="Video;%FrameRate%"',
f'"{file_src}"',
).strip()
))
#############
## - Reconstruct Command
#############
# Inset Quotes Where Quotes Are Needed
after_map_ind = None
for i, snip in enumerate(cmd_raw) :
# Record When Mapping Ends
if snip[:8] == '-codec:v' :
after_map_ind = i
# Quote File Paths
if snip[:5] == 'file:' :
cmd_raw[i] = snip[:5] + '"' + snip[5:] + '"'
# Quote Expressions
if snip[:5] == 'expr:' :
cmd_raw[i] = '"' + snip + '"'
# Quote Video Filters
if snip[:3] == '-vf' :
cmd_raw[i+1] = '"' + cmd_raw[i+1] + '"'
# Quote Audio Filters
if snip[:3] == '-af' :
cmd_raw[i+1] = '"' + cmd_raw[i+1] + '"'
# Quote HLS Segment Filename
if i == len(cmd_raw)-1 :
cmd_raw[i] = '"' + cmd_raw[i] + '"'
# Quote HLS Segment Filename
if snip[:21] == '-hls_segment_filename' :
cmd_raw[i+1] = '"' + cmd_raw[i+1] + '"'
print(
f"[CALLED] {datetime.datetime.now()}",
f"\tCommand: {' '.join([os.path.realpath(__file__)] + cmd_raw[1:])}",
'\n',
file = open(log_path, 'a'),
sep = '\n'
)
#############
## - Construct New Command
#############
if TEST :
test_write = [
# Video Encoding
'-c:v' , 'libx264',
'-pix_fmt' , 'yuv420p',
'-preset' , 'veryfast',
'-crf' , '23',
'-maxrate' , '34541128',
'-bufsize' , '69082256',
'-level' , '4.1',
'-profile:v', 'high',
# Audio Encoding
'-c:a', 'aac',
# Output
'-f' , 'avi',
'pipe:1',
# PIPE
'|',
# Playback
'ffplay',
'-hide_banner',
'-loglevel panic',
'pipe:0'
]
if primaries == "BT.2020" :
# HDR Processing Path
# Build New Command
cmd_read = [
# Base
ffmpeg,
'-hide_banner',
# ~ '-loglevel panic',
# Input #0
'-ss' , seek_time,
'-f' , inp_format,
'-i' , f'file:"{file_src}"',
# Processing
'-threads', '0',
'-s' , f'{x_res:.0f}x{y_res:.0f}',
# Encoding
'-c:v' , 'rawvideo',
'-pix_fmt', 'yuv444p',
'-an',
# Output
'-f' , 'rawvideo',
'pipe:1',
]
cmd_proc = [
hdr_sdr,
f'{x_res}',
f'{y_res}',
f'{lut_path}',
]
cmd_write = [
# Base
ffmpeg,
'-hide_banner',
# ~ '-loglevel panic',
# Input #0
'-s' , f'{x_res:.0f}x{y_res:.0f}',
'-pix_fmt', 'yuv444p',
'-f' , 'rawvideo',
'-r' , f'{fps}',
'-i' , 'pipe:0',
'-itsoffset 00:00:00.0',
# Input #1
'-ss' , seek_time,
'-f' , inp_format,
'-i' , f'file:"{file_src}"',
# Mapping (all but video from 0)
'-map_metadata', '-1',
'-map_chapters', '-1',
'-threads', '0',
'-map', '0:v',
'-map', f'1:{audio_stream_num:.0f}',
'-map', '-1:s',
]
if TEST :
cmd_write += test_write
else :
# Allow the Rest of cmd_raw to remain untouched
cmd_write += cmd_raw[after_map_ind:]
# ~ cmd_write += [
# ~ # Video Encoding
# ~ '-codec:v:0', 'libx264',
# ~ '-pix_fmt' , 'yuv420p',
# ~ '-preset' , 'veryfast',
# ~ '-crf' , '23',
# ~ '-maxrate' , '9229044',
# ~ '-bufsize' , '18458088',
# ~ '-profile:v', 'high',
# ~ '-level' , '4.1',
# ~ '-x264opts:0', 'subme=0:me_range=4:rc_lookahead=10:me=dia:no_chroma_me:8x8dct=0:partitions=none',
# ~ '-force_key_frames:0',
# ~ '"expr:gte(t,0+n_forced*3)"',
# ~ '-g', '72',
# ~ '-keyint_min', '72',
# ~ '-sc_threshold', '0',
# ~ '-vf', '"scale=trunc(min(max(iw\,ih*dar)\,1920)/2)*2:trunc(ow/dar/2)*2"',
# ~ # Audio Encoding
# ~ '-codec:a:0', 'aac',
# ~ '-strict', 'experimental',
# ~ '-ac', '2',
# ~ '-ab', '384000',
# ~ '-af', '"volume=2"',
# ~ # Timestamp
# ~ '-copyts',
# ~ '-avoid_negative_ts', 'disabled',
# ~ '-start_at_zero',
# ~ '-vsync', '-1',
# ~ # HLS Options
# ~ '-f', 'hls',
# ~ '-max_delay', '5000000',
# ~ '-hls_time', '3',
# ~ '-individual_header_trailer', '0',
# ~ '-hls_segment_type', 'mpegts',
# ~ '-start_number', '0',
# ~ '-hls_segment_filename', f'"{hls_dst}"',
# ~ '-hls_playlist_type', 'vod',
# ~ '-hls_list_size', '0',
# ~ # Output
# ~ '-y',
# ~ f'"{file_dst}"'
# ~ ]
cmd = cmd_read + ['|'] + cmd_proc + ['|'] + cmd_write
# ~ cmd = cmd_read + ['|'] + cmd_write
# ~ cmd = cmd_raw
else :
# SDR Processing Path- DO NOTHING!
if TEST :
cmd = cmd_raw[:after_map_ind] + test_write
else :
cmd = cmd_raw
print(
f"[INVOKE] {datetime.datetime.now()}",
f"\tFile: {file_src}",
f"\tPrimaries: {primaries}",
f"\tTime: {seek_time}",
f"\tRes: {x_res:.0f}x{y_res:.0f}",
'\n',
file = open(log_path, 'a'),
sep = '\n'
)
# Run Command
runCommand(*cmd, stream = True)

309
src/hdr_sdr.cpp 100644
View File

@ -0,0 +1,309 @@
/*
* This file is part of the fast-hdr project (https://git.sofusrose.com/so-rose/fast-hdr).
* Copyright (c) 2020 Sofus Rose.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// ThreadQ.h
#ifndef THREAD_Q
#define THREAD_Q
// Libraries
#include <queue>
#include <mutex>
#include <condition_variable>
using namespace std;
template <class T>
class ThreadQ {
// A Thread Safe Queue for Threaded Messaging
public:
ThreadQ() :
queue_unsafe(),
queue_lock(),
thread_msg() { }
~ThreadQ() { }
void push(T v) {
// Push to Queue
// Aquire Lock
lock_guard<mutex> lock(queue_lock);
// Push to Unsafe Queue
queue_unsafe.push(v);
// Notify One Waiting Thread to Continue
// ONLY ONE: Otherwise a Data Race Occurs.
thread_msg.notify_one();
}
T pop() {
// Pop from Queue
// Aquire Lock
unique_lock<mutex> lock(queue_lock);
// Release Lock Until queue_unsafe Has Elements
while(queue_unsafe.empty()) { thread_msg.wait(lock); }
// Aquire Front Element & Pop It
T v = queue_unsafe.front();
queue_unsafe.pop();
// Return the Element
return v;
}
private:
// Internal, Unsafe Queue
queue<T> queue_unsafe;
// Queue and Thread Messenger
mutable mutex queue_lock;
condition_variable thread_msg;
};
#endif
// Usage: <RGB PRODUCER> | ./hdr_sdr [WIDTH] [HEIGHT] | <RGB ENCODER>
// Libraries
#include <iostream>
#include <fstream>
#include <string>
#include <math.h>
#include <algorithm>
#include <thread>
#include <unistd.h>
#include <sys/stat.h>
// User Defines
#define IMG_BITS 8
#define PAY_SIZE 1 // Images per (Processing) Payload
#define BUFFER_SIZE 16 // Max Payloads to Keep in Memory
// User Types
typedef uint8_t img_uint; // Must Hold Image Data Point of >= IMG_BITS Size
#define IMG_INT_MAX ((1 << IMG_BITS) - 1)
#define IMG_INT_MAX_D ( (double) IMG_INT_MAX )
// Resolution and Size of LUTD (Dimensioned LUT
#define LUTD_BITS IMG_BITS
#define LUTD_CHNLS 3
#define LUTD_RES (1 << LUTD_BITS) // 2**LUTD_BITS
#define LUTD_SIZE (LUTD_RES * LUTD_RES * LUTD_RES * LUTD_CHNLS)
// Each 8-Bit YUV Triplet => Corresponding YUV Triplet.
// 4D LUT, Three "Cubes": Y Cube, U Cube, V Cube.
// 0. To Advance One Y, U, V, C(hannel) vue, Advance by a Stride
// 1. Use Old YUV to Find X,Y,Z Index On Cube(s).
// 2. Compute New YUV by Indexing Each Cube Identically
#define LUTD_Y_STRIDE(y) (y << (0 * LUTD_BITS)) // Y: Shift by (2**LUTD_BITS)**0
#define LUTD_U_STRIDE(u) (u << (1 * LUTD_BITS)) // U: Shift by (2**LUTD_BITS)**1
#define LUTD_V_STRIDE(v) (v << (2 * LUTD_BITS)) // V: Shift by (2**LUTD_BITS)**2
#define LUTD_C_STRIDE(c) (c << (3 * LUTD_BITS)) // C: Shift by (2**LUTD_BITS)**3
// Namespacing
using namespace std;
//###########
// - LUT Methods
//###########
void read_lutd(img_uint *lutd, string path_lutd) {
// The array must be sized as LUTD_SIZE.
ifstream file_lutd(path_lutd, ifstream::binary);
if (file_lutd.is_open()) {
file_lutd.read(reinterpret_cast<char*>(lutd), LUTD_SIZE);
}
}
void trans_lutd(
img_uint *y,
img_uint *u,
img_uint *v,
img_uint *lutd
) {
// Returns YUV Transformed by LUT
// Index the Flat LUTD Using Y,U,V Strides
size_t ind_lutd = (
LUTD_Y_STRIDE(*y) +
LUTD_U_STRIDE(*u) +
LUTD_V_STRIDE(*v)
);
*y = lutd[ind_lutd + LUTD_C_STRIDE(0)];
*u = lutd[ind_lutd + LUTD_C_STRIDE(1)];
*v = lutd[ind_lutd + LUTD_C_STRIDE(2)];
}
//###########
// - Processing Methods
//###########
void hdr_sdr(img_uint *pay, size_t size_pay, img_uint *lutd) {
// Process the Payload Using Precomputed YUV Destinations
for (size_t i_img = 0; i_img < PAY_SIZE; i_img++) {
size_t size_img = size_pay / PAY_SIZE;
size_t stride_img = size_img / 3;
#pragma omp parallel for
for (size_t i = i_img*size_img; i < i_img*size_img + stride_img; i++) {
img_uint *y = &pay[i + 0*stride_img];
img_uint *v = &pay[i + 1*stride_img];
img_uint *u = &pay[i + 2*stride_img];
trans_lutd(y, u, v, lutd);
}
}
}
//###########
// - Processing Loop
//###########
void read_stdin(
ThreadQ<img_uint*> &queue_read,
ThreadQ<img_uint*> &queue_proc,
size_t size_pay
) {
while (true) {
// GET: An Unused Payload from START/WRITER.
img_uint* pay = queue_read.pop();
// DO: Read Payload from STDIN.
cin.read(reinterpret_cast<char*>(pay), size_pay);
// PUT: A Read Payload to MAIN.
queue_proc.push(pay);
}
}
void proc(
ThreadQ<img_uint*> &queue_proc,
ThreadQ<img_uint*> &queue_write,
size_t size_pay,
img_uint *lutd
) {
while (true) {
// GET: A Read Payload from READER.
img_uint* pay = queue_proc.pop();
// DO: Process the Payload!
hdr_sdr(pay, size_pay, lutd);
// PUT: A Processed Payload to WRITER.
queue_write.push(pay);
}
}
void write_stdout(
ThreadQ<img_uint*> &queue_write,
ThreadQ<img_uint*> &queue_read,
size_t size_pay
) {
while (true) {
// GET: A Processed Payload from MAIN.
img_uint* pay = queue_write.pop();
// DO: Write Payload to STDOUT.
cout.write(reinterpret_cast<char*>(pay), size_pay);
// PUT: An Unused Payload to READER.
queue_read.push(pay);
}
}
//###########
// - Application
//###########
int main(int argc, char **argv) {
// PARSE: (Width, Height) => Image Size, LUT Path from Command Line
unsigned int x_res = 0; unsigned int y_res = 0; string path_lutd;
if (argc == 4) {
x_res = stoi(argv[1]);
y_res = stoi(argv[2]);
path_lutd = string(argv[3]);
} else {
cout << "Usage: ./hdr_sdr [WIDTH] [HEIGHT] [PATH_LUTD]" << endl;
return 1;
}
// PAYLOAD: Allocate Payload Buffer
size_t size_img = x_res * y_res * 3; // # Bytes per Image
size_t size_pay = size_img * PAY_SIZE; // # Bytes per Processing Payload
img_uint* buf_pay = (img_uint*) malloc( sizeof(img_uint) * size_pay * BUFFER_SIZE );
// LUTD: Allocate & Read LUTD
img_uint *lutd = (img_uint*) malloc( sizeof(img_uint) * LUTD_SIZE );
read_lutd(lutd, path_lutd);
// QUEUES: Setup Threaded Payload Processing Loop
// --> READER ----> PROC ----> WRITER --
// THREADED : The slowest component decides the payload throughput.
// UNTHREADED: Each component slows the payload throughput.
ThreadQ<img_uint*> queue_read = ThreadQ<img_uint*>(); // Pointers to Read Payloads To
ThreadQ<img_uint*> queue_proc = ThreadQ<img_uint*>(); // Pointers to Process Payloads In
ThreadQ<img_uint*> queue_write = ThreadQ<img_uint*>(); // Pointers to Write Payloads From
// QUEUES: Mark All Payloads as Unused
for (size_t i = 0; i < BUFFER_SIZE; i++) {
queue_read.push(buf_pay + i*size_pay);
}
// THREADS: Start READER, PROC, and WRITER
thread th1_reader(read_stdin , ref(queue_read) , ref(queue_proc) , size_pay);
thread th2_proc (proc , ref(queue_proc) , ref(queue_write), size_pay, lutd);
thread th3_writer(write_stdout, ref(queue_write), ref(queue_read) , size_pay);
// THREADS: Wait for Writer to Finish
th3_writer.join();
}